Step |
Hyp |
Ref |
Expression |
1 |
|
imasringf1.u |
|- U = ( F "s R ) |
2 |
|
imasringf1.v |
|- V = ( Base ` R ) |
3 |
1
|
a1i |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> U = ( F "s R ) ) |
4 |
2
|
a1i |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> V = ( Base ` R ) ) |
5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
|
f1f1orn |
|- ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) |
9 |
8
|
adantr |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> F : V -1-1-onto-> ran F ) |
10 |
|
f1ofo |
|- ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) |
11 |
9 10
|
syl |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> F : V -onto-> ran F ) |
12 |
9
|
f1ocpbl |
|- ( ( ( F : V -1-1-> B /\ R e. Ring ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
13 |
9
|
f1ocpbl |
|- ( ( ( F : V -1-1-> B /\ R e. Ring ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( F ` ( p ( .r ` R ) q ) ) ) ) |
14 |
|
simpr |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> R e. Ring ) |
15 |
3 4 5 6 7 11 12 13 14
|
imasring |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> ( U e. Ring /\ ( F ` ( 1r ` R ) ) = ( 1r ` U ) ) ) |
16 |
15
|
simpld |
|- ( ( F : V -1-1-> B /\ R e. Ring ) -> U e. Ring ) |