Step |
Hyp |
Ref |
Expression |
1 |
|
imasrngf1.u |
|- U = ( F "s R ) |
2 |
|
imasrngf1.v |
|- V = ( Base ` R ) |
3 |
1
|
a1i |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> U = ( F "s R ) ) |
4 |
2
|
a1i |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> V = ( Base ` R ) ) |
5 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
|
f1f1orn |
|- ( F : V -1-1-> B -> F : V -1-1-onto-> ran F ) |
8 |
7
|
adantr |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> F : V -1-1-onto-> ran F ) |
9 |
|
f1ofo |
|- ( F : V -1-1-onto-> ran F -> F : V -onto-> ran F ) |
10 |
8 9
|
syl |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> F : V -onto-> ran F ) |
11 |
8
|
f1ocpbl |
|- ( ( ( F : V -1-1-> B /\ R e. Rng ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( F ` ( p ( +g ` R ) q ) ) ) ) |
12 |
8
|
f1ocpbl |
|- ( ( ( F : V -1-1-> B /\ R e. Rng ) /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a ( .r ` R ) b ) ) = ( F ` ( p ( .r ` R ) q ) ) ) ) |
13 |
|
simpr |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> R e. Rng ) |
14 |
3 4 5 6 10 11 12 13
|
imasrng |
|- ( ( F : V -1-1-> B /\ R e. Rng ) -> U e. Rng ) |