Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imdistand.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
| Assertion | imdistand | |- ( ph -> ( ( ps /\ ch ) -> ( ps /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistand.1 | |- ( ph -> ( ps -> ( ch -> th ) ) ) |
|
| 2 | imdistan | |- ( ( ps -> ( ch -> th ) ) <-> ( ( ps /\ ch ) -> ( ps /\ th ) ) ) |
|
| 3 | 1 2 | sylib | |- ( ph -> ( ( ps /\ ch ) -> ( ps /\ th ) ) ) |