Description: An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
| Assertion | imp511 | |- ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp5.1 | |- ( ph -> ( ps -> ( ch -> ( th -> ( ta -> et ) ) ) ) ) |
|
| 2 | 1 | imp4a | |- ( ph -> ( ps -> ( ( ch /\ th ) -> ( ta -> et ) ) ) ) |
| 3 | 2 | imp44 | |- ( ( ph /\ ( ( ps /\ ( ch /\ th ) ) /\ ta ) ) -> et ) |