Description: Deduce an equivalence from two implications. Variant of impbid . (Contributed by NM, 17-Feb-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | impbida.1 | |- ( ( ph /\ ps ) -> ch ) |
|
impbida.2 | |- ( ( ph /\ ch ) -> ps ) |
||
Assertion | impbida | |- ( ph -> ( ps <-> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impbida.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | impbida.2 | |- ( ( ph /\ ch ) -> ps ) |
|
3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
4 | 2 | ex | |- ( ph -> ( ch -> ps ) ) |
5 | 3 4 | impbid | |- ( ph -> ( ps <-> ch ) ) |