Metamath Proof Explorer


Theorem imsdval2

Description: Value of the distance function of the induced metric of a normed complex vector space. Equation 1 of Kreyszig p. 59. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypotheses imsdval2.1
|- X = ( BaseSet ` U )
imsdval2.2
|- G = ( +v ` U )
imsdval2.4
|- S = ( .sOLD ` U )
imsdval2.6
|- N = ( normCV ` U )
imsdval2.8
|- D = ( IndMet ` U )
Assertion imsdval2
|- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A G ( -u 1 S B ) ) ) )

Proof

Step Hyp Ref Expression
1 imsdval2.1
 |-  X = ( BaseSet ` U )
2 imsdval2.2
 |-  G = ( +v ` U )
3 imsdval2.4
 |-  S = ( .sOLD ` U )
4 imsdval2.6
 |-  N = ( normCV ` U )
5 imsdval2.8
 |-  D = ( IndMet ` U )
6 eqid
 |-  ( -v ` U ) = ( -v ` U )
7 1 6 4 5 imsdval
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A ( -v ` U ) B ) ) )
8 1 2 3 6 nvmval
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A ( -v ` U ) B ) = ( A G ( -u 1 S B ) ) )
9 8 fveq2d
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A ( -v ` U ) B ) ) = ( N ` ( A G ( -u 1 S B ) ) ) )
10 7 9 eqtrd
 |-  ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A D B ) = ( N ` ( A G ( -u 1 S B ) ) ) )