Metamath Proof Explorer


Theorem imsym1

Description: A symmetry with -> .

See negsym1 for more information. (Contributed by Anthony Hart, 4-Sep-2011)

Ref Expression
Assertion imsym1
|- ( ( ps -> ( ps -> F. ) ) -> ( ps -> ph ) )

Proof

Step Hyp Ref Expression
1 pm2.21
 |-  ( -. ps -> ( ps -> ph ) )
2 falim
 |-  ( F. -> ph )
3 2 imim2i
 |-  ( ( ps -> F. ) -> ( ps -> ph ) )
4 1 3 ja
 |-  ( ( ps -> ( ps -> F. ) ) -> ( ps -> ph ) )