Description: The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | inf00 | |- inf ( B , (/) , R ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-inf | |- inf ( B , (/) , R ) = sup ( B , (/) , `' R ) |
|
2 | sup00 | |- sup ( B , (/) , `' R ) = (/) |
|
3 | 1 2 | eqtri | |- inf ( B , (/) , R ) = (/) |