Description: An irreducible element is in the ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irredn0.i | |- I = ( Irred ` R ) |
|
| irredcl.b | |- B = ( Base ` R ) |
||
| Assertion | irredcl | |- ( X e. I -> X e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irredn0.i | |- I = ( Irred ` R ) |
|
| 2 | irredcl.b | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | 2 3 1 4 | isirred2 | |- ( X e. I <-> ( X e. B /\ -. X e. ( Unit ` R ) /\ A. x e. B A. y e. B ( ( x ( .r ` R ) y ) = X -> ( x e. ( Unit ` R ) \/ y e. ( Unit ` R ) ) ) ) ) |
| 6 | 5 | simp1bi | |- ( X e. I -> X e. B ) |