Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | issetid | |- ( A e. _V <-> A _I A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ididg | |- ( A e. _V -> A _I A ) |
|
2 | reli | |- Rel _I |
|
3 | 2 | brrelex1i | |- ( A _I A -> A e. _V ) |
4 | 1 3 | impbii | |- ( A e. _V <-> A _I A ) |