Metamath Proof Explorer


Theorem issetid

Description: Two ways of expressing set existence. (Contributed by NM, 16-Feb-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Assertion issetid
|- ( A e. _V <-> A _I A )

Proof

Step Hyp Ref Expression
1 ididg
 |-  ( A e. _V -> A _I A )
2 reli
 |-  Rel _I
3 2 brrelex1i
 |-  ( A _I A -> A e. _V )
4 1 3 impbii
 |-  ( A e. _V <-> A _I A )