Description: Equality theorem for indexed union. (Contributed by NM, 27-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuneq1 | |- ( A = B -> U_ x e. A C = U_ x e. B C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iunss1 | |- ( A C_ B -> U_ x e. A C C_ U_ x e. B C ) | |
| 2 | iunss1 | |- ( B C_ A -> U_ x e. B C C_ U_ x e. A C ) | |
| 3 | 1 2 | anim12i | |- ( ( A C_ B /\ B C_ A ) -> ( U_ x e. A C C_ U_ x e. B C /\ U_ x e. B C C_ U_ x e. A C ) ) | 
| 4 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) | |
| 5 | eqss | |- ( U_ x e. A C = U_ x e. B C <-> ( U_ x e. A C C_ U_ x e. B C /\ U_ x e. B C C_ U_ x e. A C ) ) | |
| 6 | 3 4 5 | 3imtr4i | |- ( A = B -> U_ x e. A C = U_ x e. B C ) |