Metamath Proof Explorer


Theorem iunex

Description: The existence of an indexed union. x is normally a free-variable parameter in the class expression substituted for B , which can be read informally as B ( x ) . (Contributed by NM, 13-Oct-2003)

Ref Expression
Hypotheses iunex.1
|- A e. _V
iunex.2
|- B e. _V
Assertion iunex
|- U_ x e. A B e. _V

Proof

Step Hyp Ref Expression
1 iunex.1
 |-  A e. _V
2 iunex.2
 |-  B e. _V
3 2 rgenw
 |-  A. x e. A B e. _V
4 iunexg
 |-  ( ( A e. _V /\ A. x e. A B e. _V ) -> U_ x e. A B e. _V )
5 1 3 4 mp2an
 |-  U_ x e. A B e. _V