Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ixpeq2dva.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
Assertion | ixpeq2dva | |- ( ph -> X_ x e. A B = X_ x e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dva.1 | |- ( ( ph /\ x e. A ) -> B = C ) |
|
2 | 1 | ralrimiva | |- ( ph -> A. x e. A B = C ) |
3 | ixpeq2 | |- ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C ) |
|
4 | 2 3 | syl | |- ( ph -> X_ x e. A B = X_ x e. A C ) |