Metamath Proof Explorer


Theorem ixpeq2dva

Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016)

Ref Expression
Hypothesis ixpeq2dva.1
|- ( ( ph /\ x e. A ) -> B = C )
Assertion ixpeq2dva
|- ( ph -> X_ x e. A B = X_ x e. A C )

Proof

Step Hyp Ref Expression
1 ixpeq2dva.1
 |-  ( ( ph /\ x e. A ) -> B = C )
2 1 ralrimiva
 |-  ( ph -> A. x e. A B = C )
3 ixpeq2
 |-  ( A. x e. A B = C -> X_ x e. A B = X_ x e. A C )
4 2 3 syl
 |-  ( ph -> X_ x e. A B = X_ x e. A C )