Metamath Proof Explorer


Theorem jaodan

Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005)

Ref Expression
Hypotheses jaodan.1
|- ( ( ph /\ ps ) -> ch )
jaodan.2
|- ( ( ph /\ th ) -> ch )
Assertion jaodan
|- ( ( ph /\ ( ps \/ th ) ) -> ch )

Proof

Step Hyp Ref Expression
1 jaodan.1
 |-  ( ( ph /\ ps ) -> ch )
2 jaodan.2
 |-  ( ( ph /\ th ) -> ch )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( ph -> ( th -> ch ) )
5 3 4 jaod
 |-  ( ph -> ( ( ps \/ th ) -> ch ) )
6 5 imp
 |-  ( ( ph /\ ( ps \/ th ) ) -> ch )