Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | jaodan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
jaodan.2 | |- ( ( ph /\ th ) -> ch ) |
||
Assertion | jaodan | |- ( ( ph /\ ( ps \/ th ) ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | jaodan.2 | |- ( ( ph /\ th ) -> ch ) |
|
3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
4 | 2 | ex | |- ( ph -> ( th -> ch ) ) |
5 | 3 4 | jaod | |- ( ph -> ( ( ps \/ th ) -> ch ) ) |
6 | 5 | imp | |- ( ( ph /\ ( ps \/ th ) ) -> ch ) |