| Step |
Hyp |
Ref |
Expression |
| 1 |
|
latlej.b |
|- B = ( Base ` K ) |
| 2 |
|
latlej.l |
|- .<_ = ( le ` K ) |
| 3 |
|
latlej.j |
|- .\/ = ( join ` K ) |
| 4 |
|
simp1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> K e. Lat ) |
| 5 |
|
simp2 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X e. B ) |
| 6 |
|
simp3 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> Y e. B ) |
| 7 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
| 8 |
1 3 7 4 5 6
|
latcl2 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( <. X , Y >. e. dom .\/ /\ <. X , Y >. e. dom ( meet ` K ) ) ) |
| 9 |
8
|
simpld |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> <. X , Y >. e. dom .\/ ) |
| 10 |
1 2 3 4 5 6 9
|
lejoin1 |
|- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X .<_ ( X .\/ Y ) ) |