Metamath Proof Explorer


Theorem laut1o

Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012)

Ref Expression
Hypotheses laut1o.b
|- B = ( Base ` K )
laut1o.i
|- I = ( LAut ` K )
Assertion laut1o
|- ( ( K e. A /\ F e. I ) -> F : B -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 laut1o.b
 |-  B = ( Base ` K )
2 laut1o.i
 |-  I = ( LAut ` K )
3 eqid
 |-  ( le ` K ) = ( le ` K )
4 1 3 2 islaut
 |-  ( K e. A -> ( F e. I <-> ( F : B -1-1-onto-> B /\ A. x e. B A. y e. B ( x ( le ` K ) y <-> ( F ` x ) ( le ` K ) ( F ` y ) ) ) ) )
5 4 simprbda
 |-  ( ( K e. A /\ F e. I ) -> F : B -1-1-onto-> B )