Description: A lattice automorphism is one-to-one and onto. (Contributed by NM, 19-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | laut1o.b | |- B = ( Base ` K ) |
|
laut1o.i | |- I = ( LAut ` K ) |
||
Assertion | laut1o | |- ( ( K e. A /\ F e. I ) -> F : B -1-1-onto-> B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | laut1o.b | |- B = ( Base ` K ) |
|
2 | laut1o.i | |- I = ( LAut ` K ) |
|
3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
4 | 1 3 2 | islaut | |- ( K e. A -> ( F e. I <-> ( F : B -1-1-onto-> B /\ A. x e. B A. y e. B ( x ( le ` K ) y <-> ( F ` x ) ( le ` K ) ( F ` y ) ) ) ) ) |
5 | 4 | simprbda | |- ( ( K e. A /\ F e. I ) -> F : B -1-1-onto-> B ) |