Metamath Proof Explorer


Theorem leloei

Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 14-May-1999)

Ref Expression
Hypotheses lt.1
|- A e. RR
lt.2
|- B e. RR
Assertion leloei
|- ( A <_ B <-> ( A < B \/ A = B ) )

Proof

Step Hyp Ref Expression
1 lt.1
 |-  A e. RR
2 lt.2
 |-  B e. RR
3 leloe
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( A < B \/ A = B ) ) )
4 1 2 3 mp2an
 |-  ( A <_ B <-> ( A < B \/ A = B ) )