Description: A limit ordinal is its own supremum (union). Lemma 2.13 of Schloeder p. 5. (Contributed by NM, 4-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limuni | |- ( Lim A -> A = U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
| 2 | 1 | simp3bi | |- ( Lim A -> A = U. A ) |