Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | lo1f | |- ( F e. <_O(1) -> F : dom F --> RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1 | |- ( F e. <_O(1) <-> ( F e. ( RR ^pm RR ) /\ E. x e. RR E. m e. RR A. y e. ( dom F i^i ( x [,) +oo ) ) ( F ` y ) <_ m ) ) |
|
2 | 1 | simplbi | |- ( F e. <_O(1) -> F e. ( RR ^pm RR ) ) |
3 | reex | |- RR e. _V |
|
4 | 3 3 | elpm2 | |- ( F e. ( RR ^pm RR ) <-> ( F : dom F --> RR /\ dom F C_ RR ) ) |
5 | 4 | simplbi | |- ( F e. ( RR ^pm RR ) -> F : dom F --> RR ) |
6 | 2 5 | syl | |- ( F e. <_O(1) -> F : dom F --> RR ) |