Metamath Proof Explorer


Theorem lo1mul2

Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)

Ref Expression
Hypotheses o1add2.1
|- ( ( ph /\ x e. A ) -> B e. V )
o1add2.2
|- ( ( ph /\ x e. A ) -> C e. V )
lo1add.3
|- ( ph -> ( x e. A |-> B ) e. <_O(1) )
lo1add.4
|- ( ph -> ( x e. A |-> C ) e. <_O(1) )
lo1mul.5
|- ( ( ph /\ x e. A ) -> 0 <_ B )
Assertion lo1mul2
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) )

Proof

Step Hyp Ref Expression
1 o1add2.1
 |-  ( ( ph /\ x e. A ) -> B e. V )
2 o1add2.2
 |-  ( ( ph /\ x e. A ) -> C e. V )
3 lo1add.3
 |-  ( ph -> ( x e. A |-> B ) e. <_O(1) )
4 lo1add.4
 |-  ( ph -> ( x e. A |-> C ) e. <_O(1) )
5 lo1mul.5
 |-  ( ( ph /\ x e. A ) -> 0 <_ B )
6 2 4 lo1mptrcl
 |-  ( ( ph /\ x e. A ) -> C e. RR )
7 6 recnd
 |-  ( ( ph /\ x e. A ) -> C e. CC )
8 1 3 lo1mptrcl
 |-  ( ( ph /\ x e. A ) -> B e. RR )
9 8 recnd
 |-  ( ( ph /\ x e. A ) -> B e. CC )
10 7 9 mulcomd
 |-  ( ( ph /\ x e. A ) -> ( C x. B ) = ( B x. C ) )
11 10 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. A |-> ( B x. C ) ) )
12 1 2 3 4 5 lo1mul
 |-  ( ph -> ( x e. A |-> ( B x. C ) ) e. <_O(1) )
13 11 12 eqeltrd
 |-  ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) )