Step |
Hyp |
Ref |
Expression |
1 |
|
o1add2.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
2 |
|
o1add2.2 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
3 |
|
lo1add.3 |
|- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
4 |
|
lo1add.4 |
|- ( ph -> ( x e. A |-> C ) e. <_O(1) ) |
5 |
|
lo1mul.5 |
|- ( ( ph /\ x e. A ) -> 0 <_ B ) |
6 |
2 4
|
lo1mptrcl |
|- ( ( ph /\ x e. A ) -> C e. RR ) |
7 |
6
|
recnd |
|- ( ( ph /\ x e. A ) -> C e. CC ) |
8 |
1 3
|
lo1mptrcl |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
9 |
8
|
recnd |
|- ( ( ph /\ x e. A ) -> B e. CC ) |
10 |
7 9
|
mulcomd |
|- ( ( ph /\ x e. A ) -> ( C x. B ) = ( B x. C ) ) |
11 |
10
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. A |-> ( B x. C ) ) ) |
12 |
1 2 3 4 5
|
lo1mul |
|- ( ph -> ( x e. A |-> ( B x. C ) ) e. <_O(1) ) |
13 |
11 12
|
eqeltrd |
|- ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) ) |