Metamath Proof Explorer


Theorem locfinbas

Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010)

Ref Expression
Hypotheses locfinbas.1
|- X = U. J
locfinbas.2
|- Y = U. A
Assertion locfinbas
|- ( A e. ( LocFin ` J ) -> X = Y )

Proof

Step Hyp Ref Expression
1 locfinbas.1
 |-  X = U. J
2 locfinbas.2
 |-  Y = U. A
3 1 2 islocfin
 |-  ( A e. ( LocFin ` J ) <-> ( J e. Top /\ X = Y /\ A. s e. X E. n e. J ( s e. n /\ { x e. A | ( x i^i n ) =/= (/) } e. Fin ) ) )
4 3 simp2bi
 |-  ( A e. ( LocFin ` J ) -> X = Y )