Metamath Proof Explorer


Theorem logb2aval

Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb <. B , X >. (Contributed by David A. Wheeler, 21-Jan-2017) (Revised by David A. Wheeler, 16-Jul-2017)

Ref Expression
Assertion logb2aval
|- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( logb ` <. B , X >. ) = ( ( log ` X ) / ( log ` B ) ) )

Proof

Step Hyp Ref Expression
1 df-ov
 |-  ( B logb X ) = ( logb ` <. B , X >. )
2 logbval
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) )
3 1 2 eqtr3id
 |-  ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( logb ` <. B , X >. ) = ( ( log ` X ) / ( log ` B ) ) )