Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used in the 2-argument form logb <. B , X >. (Contributed by David A. Wheeler, 21-Jan-2017) (Revised by David A. Wheeler, 16-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | logb2aval | |- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( logb ` <. B , X >. ) = ( ( log ` X ) / ( log ` B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov | |- ( B logb X ) = ( logb ` <. B , X >. ) |
|
2 | logbval | |- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( B logb X ) = ( ( log ` X ) / ( log ` B ) ) ) |
|
3 | 1 2 | eqtr3id | |- ( ( B e. ( CC \ { 0 , 1 } ) /\ X e. ( CC \ { 0 } ) ) -> ( logb ` <. B , X >. ) = ( ( log ` X ) / ( log ` B ) ) ) |