Description: Limit points of a subset are limit points of the larger set. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lpss2.1 | |- X = U. J | |
| Assertion | lpss2 | |- ( ( J e. Top /\ A C_ X /\ B C_ A ) -> ( ( limPt ` J ) ` B ) C_ ( ( limPt ` J ) ` A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lpss2.1 | |- X = U. J | |
| 2 | 1 | lpss3 | |- ( ( J e. Top /\ A C_ X /\ B C_ A ) -> ( ( limPt ` J ) ` B ) C_ ( ( limPt ` J ) ` A ) ) |