| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lspindp3.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | lspindp3.p |  |-  .+ = ( +g ` W ) | 
						
							| 3 |  | lspindp3.o |  |-  .0. = ( 0g ` W ) | 
						
							| 4 |  | lspindp3.n |  |-  N = ( LSpan ` W ) | 
						
							| 5 |  | lspindp3.w |  |-  ( ph -> W e. LVec ) | 
						
							| 6 |  | lspindp3.x |  |-  ( ph -> X e. V ) | 
						
							| 7 |  | lspindp3.y |  |-  ( ph -> Y e. ( V \ { .0. } ) ) | 
						
							| 8 |  | lspindp3.e |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) ) | 
						
							| 9 | 5 | adantr |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> W e. LVec ) | 
						
							| 10 | 6 | adantr |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> X e. V ) | 
						
							| 11 | 7 | adantr |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> Y e. ( V \ { .0. } ) ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) | 
						
							| 13 | 1 2 3 4 9 10 11 12 | lspabs2 |  |-  ( ( ph /\ ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) ) -> ( N ` { X } ) = ( N ` { Y } ) ) | 
						
							| 14 | 13 | ex |  |-  ( ph -> ( ( N ` { X } ) = ( N ` { ( X .+ Y ) } ) -> ( N ` { X } ) = ( N ` { Y } ) ) ) | 
						
							| 15 | 14 | necon3d |  |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) ) | 
						
							| 16 | 8 15 | mpd |  |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( X .+ Y ) } ) ) |