Metamath Proof Explorer


Theorem lt0neg1dd

Description: If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses lt0neg1dd.1
|- ( ph -> A e. RR )
lt0neg1dd.2
|- ( ph -> A < 0 )
Assertion lt0neg1dd
|- ( ph -> 0 < -u A )

Proof

Step Hyp Ref Expression
1 lt0neg1dd.1
 |-  ( ph -> A e. RR )
2 lt0neg1dd.2
 |-  ( ph -> A < 0 )
3 1 lt0neg1d
 |-  ( ph -> ( A < 0 <-> 0 < -u A ) )
4 2 3 mpbid
 |-  ( ph -> 0 < -u A )