Description: If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt0neg1dd.1 | |- ( ph -> A e. RR ) |
|
lt0neg1dd.2 | |- ( ph -> A < 0 ) |
||
Assertion | lt0neg1dd | |- ( ph -> 0 < -u A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt0neg1dd.1 | |- ( ph -> A e. RR ) |
|
2 | lt0neg1dd.2 | |- ( ph -> A < 0 ) |
|
3 | 1 | lt0neg1d | |- ( ph -> ( A < 0 <-> 0 < -u A ) ) |
4 | 2 3 | mpbid | |- ( ph -> 0 < -u A ) |