Metamath Proof Explorer


Theorem lt3addmuld

Description: If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lt3addmuld.a
|- ( ph -> A e. RR )
lt3addmuld.b
|- ( ph -> B e. RR )
lt3addmuld.c
|- ( ph -> C e. RR )
lt3addmuld.d
|- ( ph -> D e. RR )
lt3addmuld.altd
|- ( ph -> A < D )
lt3addmuld.bltd
|- ( ph -> B < D )
lt3addmuld.cltd
|- ( ph -> C < D )
Assertion lt3addmuld
|- ( ph -> ( ( A + B ) + C ) < ( 3 x. D ) )

Proof

Step Hyp Ref Expression
1 lt3addmuld.a
 |-  ( ph -> A e. RR )
2 lt3addmuld.b
 |-  ( ph -> B e. RR )
3 lt3addmuld.c
 |-  ( ph -> C e. RR )
4 lt3addmuld.d
 |-  ( ph -> D e. RR )
5 lt3addmuld.altd
 |-  ( ph -> A < D )
6 lt3addmuld.bltd
 |-  ( ph -> B < D )
7 lt3addmuld.cltd
 |-  ( ph -> C < D )
8 1 2 readdcld
 |-  ( ph -> ( A + B ) e. RR )
9 2re
 |-  2 e. RR
10 9 a1i
 |-  ( ph -> 2 e. RR )
11 10 4 remulcld
 |-  ( ph -> ( 2 x. D ) e. RR )
12 1 2 4 5 6 lt2addmuld
 |-  ( ph -> ( A + B ) < ( 2 x. D ) )
13 8 3 11 4 12 7 lt2addd
 |-  ( ph -> ( ( A + B ) + C ) < ( ( 2 x. D ) + D ) )
14 10 recnd
 |-  ( ph -> 2 e. CC )
15 4 recnd
 |-  ( ph -> D e. CC )
16 14 15 adddirp1d
 |-  ( ph -> ( ( 2 + 1 ) x. D ) = ( ( 2 x. D ) + D ) )
17 2p1e3
 |-  ( 2 + 1 ) = 3
18 17 a1i
 |-  ( ph -> ( 2 + 1 ) = 3 )
19 18 oveq1d
 |-  ( ph -> ( ( 2 + 1 ) x. D ) = ( 3 x. D ) )
20 16 19 eqtr3d
 |-  ( ph -> ( ( 2 x. D ) + D ) = ( 3 x. D ) )
21 13 20 breqtrd
 |-  ( ph -> ( ( A + B ) + C ) < ( 3 x. D ) )