| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lt3addmuld.a |
|- ( ph -> A e. RR ) |
| 2 |
|
lt3addmuld.b |
|- ( ph -> B e. RR ) |
| 3 |
|
lt3addmuld.c |
|- ( ph -> C e. RR ) |
| 4 |
|
lt3addmuld.d |
|- ( ph -> D e. RR ) |
| 5 |
|
lt3addmuld.altd |
|- ( ph -> A < D ) |
| 6 |
|
lt3addmuld.bltd |
|- ( ph -> B < D ) |
| 7 |
|
lt3addmuld.cltd |
|- ( ph -> C < D ) |
| 8 |
1 2
|
readdcld |
|- ( ph -> ( A + B ) e. RR ) |
| 9 |
|
2re |
|- 2 e. RR |
| 10 |
9
|
a1i |
|- ( ph -> 2 e. RR ) |
| 11 |
10 4
|
remulcld |
|- ( ph -> ( 2 x. D ) e. RR ) |
| 12 |
1 2 4 5 6
|
lt2addmuld |
|- ( ph -> ( A + B ) < ( 2 x. D ) ) |
| 13 |
8 3 11 4 12 7
|
lt2addd |
|- ( ph -> ( ( A + B ) + C ) < ( ( 2 x. D ) + D ) ) |
| 14 |
10
|
recnd |
|- ( ph -> 2 e. CC ) |
| 15 |
4
|
recnd |
|- ( ph -> D e. CC ) |
| 16 |
14 15
|
adddirp1d |
|- ( ph -> ( ( 2 + 1 ) x. D ) = ( ( 2 x. D ) + D ) ) |
| 17 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
| 18 |
17
|
a1i |
|- ( ph -> ( 2 + 1 ) = 3 ) |
| 19 |
18
|
oveq1d |
|- ( ph -> ( ( 2 + 1 ) x. D ) = ( 3 x. D ) ) |
| 20 |
16 19
|
eqtr3d |
|- ( ph -> ( ( 2 x. D ) + D ) = ( 3 x. D ) ) |
| 21 |
13 20
|
breqtrd |
|- ( ph -> ( ( A + B ) + C ) < ( 3 x. D ) ) |