Metamath Proof Explorer


Theorem ltnr

Description: 'Less than' is irreflexive. (Contributed by NM, 18-Aug-1999)

Ref Expression
Assertion ltnr
|- ( A e. RR -> -. A < A )

Proof

Step Hyp Ref Expression
1 ltso
 |-  < Or RR
2 sonr
 |-  ( ( < Or RR /\ A e. RR ) -> -. A < A )
3 1 2 mpan
 |-  ( A e. RR -> -. A < A )