Description: 'Less than' is not symmetric. (Contributed by NM, 6-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | |- A e. RR |
|
| lt.2 | |- B e. RR |
||
| Assertion | ltnsymi | |- ( A < B -> -. B < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | |- A e. RR |
|
| 2 | lt.2 | |- B e. RR |
|
| 3 | ltnsym | |- ( ( A e. RR /\ B e. RR ) -> ( A < B -> -. B < A ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A < B -> -. B < A ) |