Description: 'Less than' is transitive. Theorem I.17 of Apostol p. 20. (Contributed by NM, 14-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lt.1 | |- A e. RR |
|
lt.2 | |- B e. RR |
||
lt.3 | |- C e. RR |
||
Assertion | lttri | |- ( ( A < B /\ B < C ) -> A < C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.1 | |- A e. RR |
|
2 | lt.2 | |- B e. RR |
|
3 | lt.3 | |- C e. RR |
|
4 | lttr | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < B /\ B < C ) -> A < C ) ) |
|
5 | 1 2 3 4 | mp3an | |- ( ( A < B /\ B < C ) -> A < C ) |