Metamath Proof Explorer


Theorem lveclmodd

Description: A vector space is a left module. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis lveclmodd.1
|- ( ph -> W e. LVec )
Assertion lveclmodd
|- ( ph -> W e. LMod )

Proof

Step Hyp Ref Expression
1 lveclmodd.1
 |-  ( ph -> W e. LVec )
2 lveclmod
 |-  ( W e. LVec -> W e. LMod )
3 1 2 syl
 |-  ( ph -> W e. LMod )