| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lvecpropd.1 |
|- ( ph -> B = ( Base ` K ) ) |
| 2 |
|
lvecpropd.2 |
|- ( ph -> B = ( Base ` L ) ) |
| 3 |
|
lvecpropd.3 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 4 |
|
lvecpropd.4 |
|- ( ph -> F = ( Scalar ` K ) ) |
| 5 |
|
lvecpropd.5 |
|- ( ph -> F = ( Scalar ` L ) ) |
| 6 |
|
lvecpropd.6 |
|- P = ( Base ` F ) |
| 7 |
|
lvecpropd.7 |
|- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
| 8 |
1 2 3 4 5 6 7
|
lmodpropd |
|- ( ph -> ( K e. LMod <-> L e. LMod ) ) |
| 9 |
4 5
|
eqtr3d |
|- ( ph -> ( Scalar ` K ) = ( Scalar ` L ) ) |
| 10 |
9
|
eleq1d |
|- ( ph -> ( ( Scalar ` K ) e. DivRing <-> ( Scalar ` L ) e. DivRing ) ) |
| 11 |
8 10
|
anbi12d |
|- ( ph -> ( ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) ) ) |
| 12 |
|
eqid |
|- ( Scalar ` K ) = ( Scalar ` K ) |
| 13 |
12
|
islvec |
|- ( K e. LVec <-> ( K e. LMod /\ ( Scalar ` K ) e. DivRing ) ) |
| 14 |
|
eqid |
|- ( Scalar ` L ) = ( Scalar ` L ) |
| 15 |
14
|
islvec |
|- ( L e. LVec <-> ( L e. LMod /\ ( Scalar ` L ) e. DivRing ) ) |
| 16 |
11 13 15
|
3bitr4g |
|- ( ph -> ( K e. LVec <-> L e. LVec ) ) |