Metamath Proof Explorer


Theorem mdandyvr14

Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016)

Ref Expression
Hypotheses mdandyvr14.1
|- ( ph <-> ze )
mdandyvr14.2
|- ( ps <-> si )
mdandyvr14.3
|- ( ch <-> ph )
mdandyvr14.4
|- ( th <-> ps )
mdandyvr14.5
|- ( ta <-> ps )
mdandyvr14.6
|- ( et <-> ps )
Assertion mdandyvr14
|- ( ( ( ( ch <-> ze ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )

Proof

Step Hyp Ref Expression
1 mdandyvr14.1
 |-  ( ph <-> ze )
2 mdandyvr14.2
 |-  ( ps <-> si )
3 mdandyvr14.3
 |-  ( ch <-> ph )
4 mdandyvr14.4
 |-  ( th <-> ps )
5 mdandyvr14.5
 |-  ( ta <-> ps )
6 mdandyvr14.6
 |-  ( et <-> ps )
7 2 1 3 4 5 6 mdandyvr1
 |-  ( ( ( ( ch <-> ze ) /\ ( th <-> si ) ) /\ ( ta <-> si ) ) /\ ( et <-> si ) )