Metamath Proof Explorer


Theorem mndid

Description: A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011)

Ref Expression
Hypotheses mndcl.b
|- B = ( Base ` G )
mndcl.p
|- .+ = ( +g ` G )
Assertion mndid
|- ( G e. Mnd -> E. u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )

Proof

Step Hyp Ref Expression
1 mndcl.b
 |-  B = ( Base ` G )
2 mndcl.p
 |-  .+ = ( +g ` G )
3 1 2 ismnd
 |-  ( G e. Mnd <-> ( A. x e. B A. y e. B ( ( x .+ y ) e. B /\ A. z e. B ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) /\ E. u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) ) )
4 3 simprbi
 |-  ( G e. Mnd -> E. u e. B A. x e. B ( ( u .+ x ) = x /\ ( x .+ u ) = x ) )