Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndplusf.1 | |- B = ( Base ` G ) |
|
| mndplusf.2 | |- .+^ = ( +f ` G ) |
||
| Assertion | mndplusf | |- ( G e. Mnd -> .+^ : ( B X. B ) --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndplusf.1 | |- B = ( Base ` G ) |
|
| 2 | mndplusf.2 | |- .+^ = ( +f ` G ) |
|
| 3 | mndmgm | |- ( G e. Mnd -> G e. Mgm ) |
|
| 4 | 1 2 | mgmplusf | |- ( G e. Mgm -> .+^ : ( B X. B ) --> B ) |
| 5 | 3 4 | syl | |- ( G e. Mnd -> .+^ : ( B X. B ) --> B ) |