Metamath Proof Explorer


Theorem mndtcco2

Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c
|- ( ph -> C = ( MndToCat ` M ) )
mndtcbas.m
|- ( ph -> M e. Mnd )
mndtcbas.b
|- ( ph -> B = ( Base ` C ) )
mndtchom.x
|- ( ph -> X e. B )
mndtchom.y
|- ( ph -> Y e. B )
mndtcco.z
|- ( ph -> Z e. B )
mndtcco.o
|- ( ph -> .x. = ( comp ` C ) )
mndtcco2.o2
|- ( ph -> .o. = ( <. X , Y >. .x. Z ) )
Assertion mndtcco2
|- ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) )

Proof

Step Hyp Ref Expression
1 mndtcbas.c
 |-  ( ph -> C = ( MndToCat ` M ) )
2 mndtcbas.m
 |-  ( ph -> M e. Mnd )
3 mndtcbas.b
 |-  ( ph -> B = ( Base ` C ) )
4 mndtchom.x
 |-  ( ph -> X e. B )
5 mndtchom.y
 |-  ( ph -> Y e. B )
6 mndtcco.z
 |-  ( ph -> Z e. B )
7 mndtcco.o
 |-  ( ph -> .x. = ( comp ` C ) )
8 mndtcco2.o2
 |-  ( ph -> .o. = ( <. X , Y >. .x. Z ) )
9 1 2 3 4 5 6 7 mndtcco
 |-  ( ph -> ( <. X , Y >. .x. Z ) = ( +g ` M ) )
10 8 9 eqtrd
 |-  ( ph -> .o. = ( +g ` M ) )
11 10 oveqd
 |-  ( ph -> ( G .o. F ) = ( G ( +g ` M ) F ) )