Metamath Proof Explorer


Theorem mpaacl

Description: Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaacl
|- ( A e. AA -> ( minPolyAA ` A ) e. ( Poly ` QQ ) )

Proof

Step Hyp Ref Expression
1 mpaalem
 |-  ( A e. AA -> ( ( minPolyAA ` A ) e. ( Poly ` QQ ) /\ ( ( deg ` ( minPolyAA ` A ) ) = ( degAA ` A ) /\ ( ( minPolyAA ` A ) ` A ) = 0 /\ ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 ) ) )
2 1 simpld
 |-  ( A e. AA -> ( minPolyAA ` A ) e. ( Poly ` QQ ) )