Metamath Proof Explorer


Theorem mpaamn

Description: Minimal polynomial is monic. (Contributed by Stefan O'Rear, 25-Nov-2014)

Ref Expression
Assertion mpaamn
|- ( A e. AA -> ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 )

Proof

Step Hyp Ref Expression
1 mpaalem
 |-  ( A e. AA -> ( ( minPolyAA ` A ) e. ( Poly ` QQ ) /\ ( ( deg ` ( minPolyAA ` A ) ) = ( degAA ` A ) /\ ( ( minPolyAA ` A ) ` A ) = 0 /\ ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 ) ) )
2 simpr3
 |-  ( ( ( minPolyAA ` A ) e. ( Poly ` QQ ) /\ ( ( deg ` ( minPolyAA ` A ) ) = ( degAA ` A ) /\ ( ( minPolyAA ` A ) ` A ) = 0 /\ ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 ) ) -> ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 )
3 1 2 syl
 |-  ( A e. AA -> ( ( coeff ` ( minPolyAA ` A ) ) ` ( degAA ` A ) ) = 1 )