Metamath Proof Explorer


Theorem mpand

Description: A deduction based on modus ponens. (Contributed by NM, 12-Dec-2004) (Proof shortened by Wolf Lammen, 7-Apr-2013)

Ref Expression
Hypotheses mpand.1
|- ( ph -> ps )
mpand.2
|- ( ph -> ( ( ps /\ ch ) -> th ) )
Assertion mpand
|- ( ph -> ( ch -> th ) )

Proof

Step Hyp Ref Expression
1 mpand.1
 |-  ( ph -> ps )
2 mpand.2
 |-  ( ph -> ( ( ps /\ ch ) -> th ) )
3 2 ancomsd
 |-  ( ph -> ( ( ch /\ ps ) -> th ) )
4 1 3 mpan2d
 |-  ( ph -> ( ch -> th ) )