| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mplgrp.p |
|- P = ( I mPoly R ) |
| 2 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 3 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 4 |
|
simpl |
|- ( ( I e. V /\ R e. Grp ) -> I e. V ) |
| 5 |
|
simpr |
|- ( ( I e. V /\ R e. Grp ) -> R e. Grp ) |
| 6 |
2 1 3 4 5
|
mplsubg |
|- ( ( I e. V /\ R e. Grp ) -> ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) ) |
| 7 |
1 2 3
|
mplval2 |
|- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 8 |
7
|
subggrp |
|- ( ( Base ` P ) e. ( SubGrp ` ( I mPwSer R ) ) -> P e. Grp ) |
| 9 |
6 8
|
syl |
|- ( ( I e. V /\ R e. Grp ) -> P e. Grp ) |