Metamath Proof Explorer


Theorem mpsyl

Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)

Ref Expression
Hypotheses mpsyl.1
|- ph
mpsyl.2
|- ( ps -> ch )
mpsyl.3
|- ( ph -> ( ch -> th ) )
Assertion mpsyl
|- ( ps -> th )

Proof

Step Hyp Ref Expression
1 mpsyl.1
 |-  ph
2 mpsyl.2
 |-  ( ps -> ch )
3 mpsyl.3
 |-  ( ph -> ( ch -> th ) )
4 1 a1i
 |-  ( ps -> ph )
5 4 2 3 sylc
 |-  ( ps -> th )