Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | mpteq1 | |- ( A = B -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd | |- ( x e. A -> C = C ) |
|
2 | 1 | rgen | |- A. x e. A C = C |
3 | mpteq12 | |- ( ( A = B /\ A. x e. A C = C ) -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |
|
4 | 2 3 | mpan2 | |- ( A = B -> ( x e. A |-> C ) = ( x e. B |-> C ) ) |