Metamath Proof Explorer


Theorem mptexd

Description: If the domain of a function given by maps-to notation is a set, the function is a set. Deduction version of mptexg . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis mptexd.1
|- ( ph -> A e. V )
Assertion mptexd
|- ( ph -> ( x e. A |-> B ) e. _V )

Proof

Step Hyp Ref Expression
1 mptexd.1
 |-  ( ph -> A e. V )
2 mptexg
 |-  ( A e. V -> ( x e. A |-> B ) e. _V )
3 1 2 syl
 |-  ( ph -> ( x e. A |-> B ) e. _V )