Metamath Proof Explorer


Theorem mvlraddi

Description: Move the right term in a sum on the LHS to the RHS. (Contributed by David A. Wheeler, 11-Oct-2018)

Ref Expression
Hypotheses mvlraddi.1
|- A e. CC
mvlraddi.2
|- B e. CC
mvlraddi.3
|- ( A + B ) = C
Assertion mvlraddi
|- A = ( C - B )

Proof

Step Hyp Ref Expression
1 mvlraddi.1
 |-  A e. CC
2 mvlraddi.2
 |-  B e. CC
3 mvlraddi.3
 |-  ( A + B ) = C
4 1 2 pncan3oi
 |-  ( ( A + B ) - B ) = A
5 3 oveq1i
 |-  ( ( A + B ) - B ) = ( C - B )
6 4 5 eqtr3i
 |-  A = ( C - B )