Metamath Proof Explorer


Theorem naddcl

Description: Closure law for natural addition. (Contributed by Scott Fenton, 26-Aug-2024)

Ref Expression
Assertion naddcl
|- ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On )

Proof

Step Hyp Ref Expression
1 naddcllem
 |-  ( ( A e. On /\ B e. On ) -> ( ( A +no B ) e. On /\ ( A +no B ) = |^| { x e. On | ( ( +no " ( { A } X. B ) ) C_ x /\ ( +no " ( A X. { B } ) ) C_ x ) } ) )
2 1 simpld
 |-  ( ( A e. On /\ B e. On ) -> ( A +no B ) e. On )