Metamath Proof Explorer


Theorem nanbi12i

Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypotheses nanbii.1
|- ( ph <-> ps )
nanbi12i.2
|- ( ch <-> th )
Assertion nanbi12i
|- ( ( ph -/\ ch ) <-> ( ps -/\ th ) )

Proof

Step Hyp Ref Expression
1 nanbii.1
 |-  ( ph <-> ps )
2 nanbi12i.2
 |-  ( ch <-> th )
3 nanbi12
 |-  ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) )
4 1 2 3 mp2an
 |-  ( ( ph -/\ ch ) <-> ( ps -/\ th ) )