Description: Join two logical equivalences with anti-conjunction. (Contributed by SF, 2-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nanbii.1 | |- ( ph <-> ps ) |
|
nanbi12i.2 | |- ( ch <-> th ) |
||
Assertion | nanbi12i | |- ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nanbii.1 | |- ( ph <-> ps ) |
|
2 | nanbi12i.2 | |- ( ch <-> th ) |
|
3 | nanbi12 | |- ( ( ( ph <-> ps ) /\ ( ch <-> th ) ) -> ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( ( ph -/\ ch ) <-> ( ps -/\ th ) ) |