Metamath Proof Explorer


Theorem nd4

Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)

Ref Expression
Assertion nd4
|- ( A. x x = y -> -. A. z y e. x )

Proof

Step Hyp Ref Expression
1 nd3
 |-  ( A. y y = x -> -. A. z y e. x )
2 1 aecoms
 |-  ( A. x x = y -> -. A. z y e. x )