Description: A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | nd4 | |- ( A. x x = y -> -. A. z y e. x ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nd3 | |- ( A. y y = x -> -. A. z y e. x ) |
|
2 | 1 | aecoms | |- ( A. x x = y -> -. A. z y e. x ) |