Description: Contrapositive deduction for inequality. (Contributed by NM, 2-Apr-2007) (Proof shortened by Wolf Lammen, 23-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necon1ad.1 | |- ( ph -> ( -. ps -> A = B ) ) |
|
Assertion | necon1ad | |- ( ph -> ( A =/= B -> ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon1ad.1 | |- ( ph -> ( -. ps -> A = B ) ) |
|
2 | 1 | necon3ad | |- ( ph -> ( A =/= B -> -. -. ps ) ) |
3 | notnotr | |- ( -. -. ps -> ps ) |
|
4 | 2 3 | syl6 | |- ( ph -> ( A =/= B -> ps ) ) |