Metamath Proof Explorer


Theorem nelne1

Description: Two classes are different if they don't contain the same element. (Contributed by NM, 3-Feb-2012) (Proof shortened by Wolf Lammen, 14-May-2023)

Ref Expression
Assertion nelne1
|- ( ( A e. B /\ -. A e. C ) -> B =/= C )

Proof

Step Hyp Ref Expression
1 nelneq2
 |-  ( ( A e. B /\ -. A e. C ) -> -. B = C )
2 1 neqned
 |-  ( ( A e. B /\ -. A e. C ) -> B =/= C )