Metamath Proof Explorer


Theorem nelneq

Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997)

Ref Expression
Assertion nelneq
|- ( ( A e. C /\ -. B e. C ) -> -. A = B )

Proof

Step Hyp Ref Expression
1 eleq1
 |-  ( A = B -> ( A e. C <-> B e. C ) )
2 1 biimpcd
 |-  ( A e. C -> ( A = B -> B e. C ) )
3 2 con3dimp
 |-  ( ( A e. C /\ -. B e. C ) -> -. A = B )