Metamath Proof Explorer


Theorem neq0OLD

Description: Obsolete version of neq0 as of 28-Jun-2024. (Contributed by NM, 21-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion neq0OLD
|- ( -. A = (/) <-> E. x x e. A )

Proof

Step Hyp Ref Expression
1 nfcv
 |-  F/_ x A
2 1 neq0f
 |-  ( -. A = (/) <-> E. x x e. A )